Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Alternative sodium sources for Cu(In,Ga)Se2 thin-film solar cells on flexible substrates

Identifieur interne : 003456 ( Main/Repository ); précédent : 003455; suivant : 003457

Alternative sodium sources for Cu(In,Ga)Se2 thin-film solar cells on flexible substrates

Auteurs : RBID : Pascal:11-0433237

Descripteurs français

English descriptors

Abstract

Sodium (Na) is an important doping element for Cu(In,Ga)Se2 (CIGS) solar cells. However, when using Na-free flexible substrates like steel foil or polyimide film, it is necessary to ensure an efficient supply of sodium to achieve high cell efficiencies. The common incorporation methods for Na on these Na-free substrates are either to deposit a Na-containing precursor layer (e.g. NaF) onto the molybdenum (Mo) back contact prior to CIGS growth or to coevaporate a Na compound during CIGS growth. Another way is to incorporate sodium after CIGS growth by a post-deposition treatment with NaF. In this work, we tested two alternative Na doping methods which are well suited for a production line due to their easy controllability. One approach is to dope the molybdenum target with Na. With Na-doped Mo layers (Mo:Na) as the back contact, we could achieve efficiencies of 13.1% both on titanium (Ti) and stainless Cr steel foil using a single-stage inline CIGS process. With a low-temperature single-stage CIGS process on polyimide (PI) we reached an efficiency of 11.2% using a Mo:Na back contact. Another doping method involves sol-gel-deposited silicon oxide layers which contain Na (SiOx:Na). We have successfully deposited these sol-gel layers onto stainless steel foil by a roll-to-roll (R2R) method with short annealing times as needed in production. With these SiOx:Na layers we could achieve efficiencies of 13.7% on stainless steel foil and 11.5% on mild steel sheet using a single-stage inline CIGS process.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0433237

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Alternative sodium sources for Cu(In,Ga)Se
<sub>2</sub>
thin-film solar cells on flexible substrates</title>
<author>
<name sortKey="Wuerz, R" uniqKey="Wuerz R">R. Wuerz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Zentrum für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg, Industriestrasse 6</s1>
<s2>70565 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>70565 Stuttgart</wicri:noRegion>
<wicri:noRegion>Industriestrasse 6</wicri:noRegion>
<wicri:noRegion>70565 Stuttgart</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Eicke, A" uniqKey="Eicke A">A. Eicke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Zentrum für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg, Industriestrasse 6</s1>
<s2>70565 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>70565 Stuttgart</wicri:noRegion>
<wicri:noRegion>Industriestrasse 6</wicri:noRegion>
<wicri:noRegion>70565 Stuttgart</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kessler, F" uniqKey="Kessler F">F. Kessler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Zentrum für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg, Industriestrasse 6</s1>
<s2>70565 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>70565 Stuttgart</wicri:noRegion>
<wicri:noRegion>Industriestrasse 6</wicri:noRegion>
<wicri:noRegion>70565 Stuttgart</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rogin, P" uniqKey="Rogin P">P. Rogin</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Leibniz-Institut für Neue Materialien gGmbH, Campus D2 2</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Sarre (Land)</region>
<settlement type="city">Sarrebruck</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yazdani Assl, O" uniqKey="Yazdani Assl O">O. Yazdani-Assl</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Leibniz-Institut für Neue Materialien gGmbH, Campus D2 2</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Sarre (Land)</region>
<settlement type="city">Sarrebruck</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0433237</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0433237 INIST</idno>
<idno type="RBID">Pascal:11-0433237</idno>
<idno type="wicri:Area/Main/Corpus">002829</idno>
<idno type="wicri:Area/Main/Repository">003456</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Chromium steels</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Diffusion</term>
<term>Doping</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Growth mechanism</term>
<term>Indium selenides</term>
<term>Iron</term>
<term>Mild steel</term>
<term>Molybdenum</term>
<term>Oxide layer</term>
<term>Polyimide</term>
<term>Precursor</term>
<term>Silicon oxides</term>
<term>Sodium</term>
<term>Sodium addition</term>
<term>Sol gel process</term>
<term>Solar cell</term>
<term>Stainless steel</term>
<term>Thin film</term>
<term>Thin film device</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dispositif couche mince</term>
<term>Dopage</term>
<term>Séléniure d'indium</term>
<term>Cellule solaire</term>
<term>Imide polymère</term>
<term>Couche mince</term>
<term>Précurseur</term>
<term>Molybdène</term>
<term>Mécanisme croissance</term>
<term>Addition sodium</term>
<term>Acier inoxydable</term>
<term>Acier chrome</term>
<term>Procédé sol gel</term>
<term>Oxyde de silicium</term>
<term>Sodium</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Couche oxyde</term>
<term>Recuit</term>
<term>Acier doux</term>
<term>Diffusion(transport)</term>
<term>Fer</term>
<term>Na</term>
<term>Substrat acier</term>
<term>NaF</term>
<term>Mo</term>
<term>Substrat titane</term>
<term>8460J</term>
<term>6855A</term>
<term>8115L</term>
<term>6835F</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Molybdène</term>
<term>Sodium</term>
<term>Cuivre</term>
<term>Fer</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sodium (Na) is an important doping element for Cu(In,Ga)Se
<sub>2</sub>
(CIGS) solar cells. However, when using Na-free flexible substrates like steel foil or polyimide film, it is necessary to ensure an efficient supply of sodium to achieve high cell efficiencies. The common incorporation methods for Na on these Na-free substrates are either to deposit a Na-containing precursor layer (e.g. NaF) onto the molybdenum (Mo) back contact prior to CIGS growth or to coevaporate a Na compound during CIGS growth. Another way is to incorporate sodium after CIGS growth by a post-deposition treatment with NaF. In this work, we tested two alternative Na doping methods which are well suited for a production line due to their easy controllability. One approach is to dope the molybdenum target with Na. With Na-doped Mo layers (Mo:Na) as the back contact, we could achieve efficiencies of 13.1% both on titanium (Ti) and stainless Cr steel foil using a single-stage inline CIGS process. With a low-temperature single-stage CIGS process on polyimide (PI) we reached an efficiency of 11.2% using a Mo:Na back contact. Another doping method involves sol-gel-deposited silicon oxide layers which contain Na (SiO
<sub>x</sub>
:Na). We have successfully deposited these sol-gel layers onto stainless steel foil by a roll-to-roll (R2R) method with short annealing times as needed in production. With these SiO
<sub>x</sub>
:Na layers we could achieve efficiencies of 13.7% on stainless steel foil and 11.5% on mild steel sheet using a single-stage inline CIGS process.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>519</s2>
</fA05>
<fA06>
<s2>21</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Alternative sodium sources for Cu(In,Ga)Se
<sub>2</sub>
thin-film solar cells on flexible substrates</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the EMRS 2010 Spring Meeting Symposium M: Thin Film Chalcogenide Photovoltaic Materials Strasbourg, France</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>WUERZ (R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EICKE (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KESSLER (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ROGIN (P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YAZDANI-ASSL (O.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ROMEO (Alessandro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SCHEER (Roland)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>GUILLEMOLES (Jean François)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>YAMADA (Akira)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>ABOU-RAS (Daniel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Zentrum für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg, Industriestrasse 6</s1>
<s2>70565 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Leibniz-Institut für Neue Materialien gGmbH, Campus D2 2</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>the European Materials Research Society (E-MRS</s1>
<s3>EUR</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>7268-7271</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000509101330330</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>12 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0433237</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Sodium (Na) is an important doping element for Cu(In,Ga)Se
<sub>2</sub>
(CIGS) solar cells. However, when using Na-free flexible substrates like steel foil or polyimide film, it is necessary to ensure an efficient supply of sodium to achieve high cell efficiencies. The common incorporation methods for Na on these Na-free substrates are either to deposit a Na-containing precursor layer (e.g. NaF) onto the molybdenum (Mo) back contact prior to CIGS growth or to coevaporate a Na compound during CIGS growth. Another way is to incorporate sodium after CIGS growth by a post-deposition treatment with NaF. In this work, we tested two alternative Na doping methods which are well suited for a production line due to their easy controllability. One approach is to dope the molybdenum target with Na. With Na-doped Mo layers (Mo:Na) as the back contact, we could achieve efficiencies of 13.1% both on titanium (Ti) and stainless Cr steel foil using a single-stage inline CIGS process. With a low-temperature single-stage CIGS process on polyimide (PI) we reached an efficiency of 11.2% using a Mo:Na back contact. Another doping method involves sol-gel-deposited silicon oxide layers which contain Na (SiO
<sub>x</sub>
:Na). We have successfully deposited these sol-gel layers onto stainless steel foil by a roll-to-roll (R2R) method with short annealing times as needed in production. With these SiO
<sub>x</sub>
:Na layers we could achieve efficiencies of 13.7% on stainless steel foil and 11.5% on mild steel sheet using a single-stage inline CIGS process.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15A</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15L</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H35F</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dispositif couche mince</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Thin film device</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Dispositivo capa delgada</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Imide polymère</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Polyimide</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Imida polímero</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Précurseur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Precursor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Precursor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Molibdeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Addition sodium</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Sodium addition</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Adición sodio</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Acier inoxydable</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Stainless steel</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Acero inoxidable</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Acier chrome</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Chromium steels</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Procédé sol gel</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Sol gel process</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Procedimiento sol gel</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Oxyde de silicium</s0>
<s2>NK</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Sodium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Sodium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Sodio</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Galio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Couche oxyde</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Oxide layer</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Capa óxido</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Acier doux</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Mild steel</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Acero dulce</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Fer</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Iron</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Hierro</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Na</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Substrat acier</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>NaF</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Mo</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Substrat titane</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>6855A</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>8115L</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>6835F</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>297</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EMRS Spring Meeting Symposium M: Thin Film Chalcogenide Photovoltaic Materials</s1>
<s2>10</s2>
<s3>Strasbourg FRA</s3>
<s4>2010-06-07</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003456 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003456 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0433237
   |texte=   Alternative sodium sources for Cu(In,Ga)Se2 thin-film solar cells on flexible substrates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024